If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+18y+12=0
a = 3; b = 18; c = +12;
Δ = b2-4ac
Δ = 182-4·3·12
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{5}}{2*3}=\frac{-18-6\sqrt{5}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{5}}{2*3}=\frac{-18+6\sqrt{5}}{6} $
| 6-3x÷4=-3 | | 5(j-4)=55 | | (x+20)/9+(3x/7)=6 | | 8-3a=2a-12 | | -7x+12x-2x=23+13x | | 2x-3/5=0 | | 2z/3-2=4 | | 10(p+4)=100 | | 8x+1/2=5 | | 9(k-17)=36 | | -5m+5=-35 | | (4/3)x-5/3=(1/3)x+10 | | 8x3-2x2-10x+3=0 | | 1y=8+9=16 | | y+9/3=5 | | X^3-4x^2+2x-20=0 | | 3x+16/4x16=7/8 | | 2⁄3x^2-1⁄2x-3⁄4=0 | | -6x^2+22x+45=0 | | ^1/2(2x+6)=3 | | 2v–81=11v | | 5(h-11)=50 | | 2y+9/2=-8 | | 7(x-1)=3x+9 | | -2|2.2x-3.3|=-6 | | 07y=21 | | x/3-x+4/5=2 | | 6n-2=2(n-10) | | 6n-2=2(n=10) | | 4x+16+2=-6 | | u-–15.2=17.2 | | 6k-5-k=-9k-5 |